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Preface

This book introduces probability and statistics to students of engineering and
the physical sciences. It is primarily applications focused but it contains
optional enrichment material. Each chapter begins with an introductory state-

ment and concludes with a set of statistical guidelines for correctly applying
statistical procedures and avoiding common pitfalls. TheseDo’s and Don’ts are then
followed by a checklist of key terms. Important formulas, theorems, and rules are
set out from the text in boxes.

The exposition of the concepts and statistical methods is especially clear. It in-
cludes a careful introduction to probability and some basic distributions. It continues
by placing emphasis on understanding the meaning of confidence intervals and the
logic of testing statistical hypotheses. Confidence intervals are stressed as the ma-
jor procedure for making inferences. Their properties are carefully described and
their interpretation is reviewed in the examples. The steps for hypothesis testing
are clearly and consistently delineated in each application. The interpretation and
calculation of the P-value is reinforced with many examples.

In this ninth edition, we have continued to build on the strengths of the previ-
ous editions by adding several more data sets and examples showing application of
statistics in scientific investigations. The new data sets, like many of those already
in the text, arose in the author’s consulting activities or in discussions with scientists
and engineers about their statistical problems. Data from some companies have been
disguised, but they still retain all of the features necessary to illustrate the statistical
methods and the reasoning required to make generalizations from data collected in
an experiment.

The time has arrived when software computations have replaced table lookups
for percentiles and probabilities as well as performing the calculations for a statisti-
cal analysis. Today’s widespread availability of statistical software packages makes
it imperative that students now become acquainted with at least one of them.We sug-
gest using software for performing some analysis with larger samples and for per-
forming regression analysis. Besides having several existing exercises describing the
use of MINITAB, we now give the R commands within many of the examples. This
new material augments the basics of the freeware R that are already in Appendix C.

NEW FEATURES OF THE NINTH EDITION INCLUDE:
Large number of new examples. Many new examples are included. Most are based
on important current engineering or scientific data. The many contexts further
strengthen the orientation towards an applications-based introduction to statistics.

More emphasis on P-values. New graphs illustrating P-values appear in several
examples along with an interpretation.

More details about using R. Throughout the book, R commands are included in a
number of examples. This makes it easy for students to check the calculations, on
their own laptop or tablet, while reading an example.

Stress on key formulas and downplay of calculation formulas. Generally, com-
putation formulas now appear only at the end of sections where they can easily be
skipped. This is accomplished by setting key formulas in the context of an applica-
tion which only requires all, or mostly all, integer arithmetic. The student can then
check their results with their choice of software.

7



8 Preface

Visual presentation of 22 and 23 designs. Two-level factorial designs have a
50-year tradition in the teaching of engineering statistics at the University of
Wisconsin. It is critical that engineering students become acquainted with the key
ideas of (i) systematically varying several input variables at a time and (ii) how to
interpret interactions. Major revisions have produced Section 13.3 that is now self-
contained. Instructors can cover this material in two or three lectures at the end of
course.

New data based exercises. A large number of exercises have been changed to fea-
ture real applications. These contexts help both stimulate interest and strengthen a
student’s appreciation of the role of statistics in engineering applications.

Examples and now numbered. All examples are now numbered within each
chapter.

This text has been tested extensively in courses for university students as well as
by in-plant training of engineers. The whole book can be covered in a two-semester
or three-quarter course consisting of three lectures a week. The book also makes
an excellent basis for a one-semester course where the lecturer can choose topics
to emphasize theory or application. The author covers most of the first seven chap-
ters, straight-line regression, and the graphic presentation of factorial designs in one
semester (see the basic applications syllabus below for the details).

To give students an early preview of statistics, descriptive statistics are covered
in Chapter 2. Chapters 3 through 6 provide a brief, though rigorous, introduction
to the basics of probability, popular distributions for modeling population variation,
and sampling distributions. Chapters 7, 8, and 9 form the core material on the key
concepts and elementary methods of statistical inference. Chapters 11, 12, and 13
comprise an introduction to some of the standard, though more advanced, topics of
experimental design and regression. Chapter 14 concerns nonparametric tests and
goodness-of-fit test. Chapter 15 stresses the key underlying statistical ideas for qual-
ity improvement, and Chapter 16 treats the associated ideas of reliability and the
fitting of life length models.

The mathematical background expected of the reader is a year course in calcu-
lus. Calculus is required mainly for Chapter 5 dealing with basic distribution theory
in the continuous case and some sections of Chapter 6.

It is important, in a one-semester course, to make sure engineers and scientists
become acquainted with the least squares method, at least in fitting a straight line. A
short presentation of two predictor variables is desirable, if there is time. Also, not
to be missed, is the exposure to 2-level factorial designs. Section 13.3 now stands
alone and can be covered in two or three lectures.

For an audience requiring more exposure to mathematical statistics, or if this is
the first of a two-semester course, we suggest a careful development of the properties
of expectation (5.10), representations of normal theory distributions (6.5), and then
moment generating functions (5.11) and their role in distribution theory (6.6).

For each of the two cases, we suggest a syllabus that the instructor can easily
modify according to their own preferences.



Preface 9

One-semester introduction to probability and
statistics emphasizing the understanding of
basic applications of statistics.

A first semester introduction that develops
the tools of probability and some statistical
inferences.

Chapter 1 especially 1.6 Chapter 1 especially 1.6
Chapter 2 Chapter 2
Chapter 3 Chapter 3
Chapter 4 4.4–4.7 Chapter 4 4.4–4.7

4.8 (geometric, negative
binomial)

Chapter 5 5.1–5.4, 5.6, 5.12
5.10 Select examples of joint
distribution, independence,
mean and variance of linear
combinations.

Chapter 5 5.1–5.4, 5.6, 5.12
5.5, 5.7, 5.8 (gamma, beta)
5.10 Develop joint distributions,
independence expectation and
moments of linear combinations.

Chapter 6 6.1–6.4 Chapter 6 6.1–6.4
6.5–6.7 (Representations,

mgf’s, transformation)
Chapter 7 7.1–7.7 Chapter 7 7.1–7.7
Chapter 8 Chapter 8
Chapter 9 (could skip) Chapter 9 (could skip)
Chapter 10 10.1–10.4 Chapter 10 10.1–10.4
Chapter 11 11.1–11.2

11.3 and 11.4 Examples
Chapter 13 13.3 22 and 23 designs

also 13.1 if possible

Any table whose number ends in W can be downloaded from the book’s section
of the website

http://www.pearsonglobaleditions.com/Johnson
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E verything dealing with the collection, processing, analysis, and interpretation of nu-
merical data belongs to the domain of statistics. In engineering, this includes such
diversified tasks as calculating the average length of computer downtimes, collect-

ing and presenting data on the numbers of persons attending seminars on solar energy,
evaluating the efectiveness of commercial products, predicting the reliability of a launch
vehicle, and studying the vibrations of airplane wings.

In Sections 1.2, 1.3, 1.4, and 1.5 we discuss the recent growth of statistics and its
applications to problems of engineering. Statistics plays a major role in the improvement
of quality of any product or service. An engineer using the techniques described in this
book can become much more efective in all phases of work relating to research, devel-
opment, or production. In Section 1.6 we begin our introduction to statistical concepts
by emphasizing the distinction between a population and a sample.

1.1 Why Study Statistics?
Answers provided by statistical analysis can provide the basis for making better
decisions and choices of actions. For example, city ofcials might want to know
whether the level of lead in the water supply is within safety standards. Because not
all of the water can be checked, answers must be based on the partial information
from samples of water that are collected for this purpose. As another example, an
engineer must determine the strength of supports for generators at a power plant.
First, loading a few supports to failure, she obtains their strengths. These values
provide a basis for assessing the strength of all the other supports that were not
tested.

When information is sought, statistical ideas suggest a typical collection process
with four crucial steps.

1. Set clearly defined goals for the investigation.
2. Make a plan of what data to collect and how to collect it.
3. Apply appropriate statistical methods to efciently extract information

from the data.
4. Interpret the information and draw conclusions.

These indispensable steps will provide a frame of reference throughout as we
develop the key ideas of statistics. Statistical reasoning and methods can help you
become efcient at obtaining information and making useful conclusions.

11



12 Chapter 1 Introduction

1.2 Modern Statistics
The origin of statistics can be traced to two areas of interest that, on the surface, have
little in common: games of chance and what is now called political science. Mid-
eighteenth-century studies in probability, motivated largely by interest in games of
chance, led to the mathematical treatment of errors of measurement and the theory
that now forms the foundation of statistics. In the same century, interest in the nu-
merical description of political units (cities, provinces, countries, etc.) led to what is
now called descriptive statistics. At first, descriptive statistics consisted merely of
the presentation of data in tables and charts; nowadays, it includes the summariza-
tion of data by means of numerical descriptions and graphs.

In recent decades, the growth of statistics has made itself felt in almost every
major phase of activity. The most important feature of its growth has been the shift
in emphasis from descriptive statistics to statistical inference. Statistical inference
concerns generalizations based on sample data. It applies to such problems as esti-
mating an engine’s average emission of pollutants from trial runs, testing a manu-
facturer’s claim on the basis of measurements performed on samples of his product,
and predicting the success of a launch vehicle in putting a communications satel-
lite in orbit on the basis of sample data pertaining to the performance of the launch
vehicle’s components.

When making a statistical inference, namely, an inference that goes beyond the
information contained in a set of data, always proceed with caution. Onemust decide
carefully how far to go in generalizing from a given set of data. Careful consider-
ation must be given to determining whether such generalizations are reasonable or
justifiable and whether it might be wise to collect more data. Indeed, some of the
most important problems of statistical inference concern the appraisal of the risks
and the consequences that arise by making generalizations from sample data. This
includes an appraisal of the probabilities of making wrong decisions, the chances of
making incorrect predictions, and the possibility of obtaining estimates that do not
adequately reflect the true situation.

We approach the subject of statistics as a science whenever possible, we develop
each statistical idea from its probabilistic foundation, and immediately apply each
idea to problems of physical or engineering science as soon as it has been developed.
The great majority of the methods we shall use in stating and solving these problems
belong to the frequency or classical approach, where statistical inferences concern
fixed but unknown quantities. This approach does not formally take into account the
various subjective factors mentioned above.When appropriate, we remind the reader
that subjective factors do exist and also indicate what role they might play in making
a final decision. This “bread-and-butter” approach to statistics presents the subject
in the form in which it has successfully contributed to engineering science, as well
as to the natural and social sciences, in the last half of the twentieth century, into the
first part of the twenty-first century, and beyond.

1.3 Statistics and Engineering
The impact of the recent growth of statistics has been felt strongly in engineering
and industrial management. Indeed, it would be difcult to overestimate the contri-
butions statistics has made to solving production problems, to the efective use of
materials and labor, to basic research, and to the development of new products. As
in other sciences, statistics has become a vital tool to engineers. It enables them to
understand phenomena subject to variation and to efectively predict or control them.
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In this text, our attention will be directed largely toward engineering applica-
tions, but we shall not hesitate to refer also to other areas to impress upon the reader
the great generality of most statistical techniques. The statistical method used to
estimate the average coefcient of thermal expansion of a metal serves also to es-
timate the average time it takes a health care worker to perform a given task, the
average thickness of a pelican eggshell, or the average IQ of first-year college stu-
dents. Similarly, the statistical method used to compare the strength of two alloys
serves also to compare the efectiveness of two teaching methods, or the merits of
two insect sprays.

1.4 The Role of the Scientist and Engineer
in Quality Improvement

During the last 3 decades, the United States has found itself in an increasingly com-
petitive world market. This competition has fostered an international revolution in
quality improvement. The teaching and ideas of W. Edwards Deming (1900–1993)
were instrumental in the rejuvenation of Japanese industry. He stressed that Amer-
ican industry, in order to survive, must mobilize with a continuing commitment to
quality improvement. From design to production, processes need to be continually
improved. The engineer and scientist, with their technical knowledge and armed
with basic statistical skills in data collection and graphical display, can be main par-
ticipants in attaining this goal.

Quality improvement is based on the philosophy of “make it right the first
time.” Furthermore, one should not be content with any process or product but should
continue to look for ways of improving it. Wewill emphasize the key statistical com-
ponents of any modern quality-improvement program. In Chapter 15, we outline the
basic issues of quality improvement and present some of the specialized statistical
techniques for studying production processes. The experimental designs discussed
in Chapter 13 are also basic to the process of quality improvement.

Closely related to quality-improvement techniques are the statistical techniques
that have been developed to meet the reliability needs of the highly complex prod-
ucts of space-age technology. Chapter 16 provides an introduction to this area.

1.5 A Case Study: Visually Inspecting Data to Improve Product Quality
This study1 dramatically illustrates the important advantages gained by appropri-
ately plotting and then monitoring manufacturing data. It concerns a ceramic part
used in popular cofee makers. This ceramic part is made by filling the cavity be-
tween two dies of a pressing machine with a mixture of clay, water, and oil. After
pressing, but before the part is dried to a hardened state, critical dimensions are
measured. The depth of the slot is of interest here.

Because of natural uncontrolled variation in the clay-water-oil mixture, the con-
dition of the press, diferences in operators, and so on, we cannot expect all of the
slot measurements to be exactly the same. Some variation in the depth of slots is
inevitable, but the depth needs to be controlled within certain limits for the part to
fit when assembled.

1Courtesy of Don Ermer



14 Chapter 1 Introduction

Table 1.1 Slot depth (thousandths of an inch)

Time 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00

1 214 218 218 216 217 218 218 219
2 211 217 218 218 220 219 217 219
3 218 219 217 219 221 216 217 218

Sum 643 654 653 653 658 653 652 656

x 214.3 218.0 217.7 217.7 219.3 217.7 217.3 218.7

Time 10:30 11:00 11:30 12:30 1:00 1:30 2:00 2:30

1 216 216 218 219 217 219 217 215
2 219 218 219 220 220 219 220 215
3 218 217 220 221 216 220 218 214

Sum 653 651 657 660 653 658 655 644

x 217.7 217.0 219.0 220.0 217.7 219.3 218.3 214.7

Slot depth was measured on three ceramic parts selected from production every
half hour during the first shift from 6 a.m. to 3 p.m. The data in Table 1.1 were
obtained on a Friday. The sample mean, or average, for the first sample of 214, 211,
and 218 (thousandths of an inch) is

214 + 211 + 218
3

= 643
3

= 214.3

This value is the first entry in row marked x̄.
The graphical procedure, called an X-bar chart, consists of plotting the sample

averages versus time order. This plot will indicate when changes have occurred and
actions need to be taken to correct the process.

From a prior statistical study, it was known that the process was stable and that
it varied about a value of 217.5 thousandths of an inch. This value will be taken as
the central line of the X-bar chart in Figure 1.1.

central line: x = 217.5

It was further established that the process was capable of making mostly good
ceramic parts if the average slot dimension for a sample remained between certain
control limits.

Lower control limit: LCL = 215.0

Upper control limit: UCL = 220.0

What does the chart tell us? The mean of 214.3 for the first sample, taken at
approximately 6:30 a.m., is outside the lower control limit. Further, a measure of
the variation in this sample

range = largest − smallest = 218 − 211 = 7
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Figure 1.1
X-bar chart for depth
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is large compared to the others. This evidence suggests that the pressing machine
had not yet reached a steady state. The control chart suggests that it is necessary to
warm up the pressing machine before the first shift begins at 6 a.m.Management and
engineering implemented an early start-up and thereby improved the process. The
operator and foreman did not have the authority to make this change. Deming claims
that 85% or more of our quality problems are in the system and that the operator and
others responsible for the day-to-day operation are responsible for 15% or less of
our quality problems.

The X-bar chart further shows that, throughout the day, the process was stable
but a little on the high side, although no points were out of control until the last
sample of the day. Here an unfortunate oversight occurred. The operator did not
report the out-of-control value to either the set-up person or the foreman because it
was near the end of her shift and the start of her weekend. She also knew the set-
up person was already cleaning up for the end of the shift and that the foreman was
likely thinking about going across the street to the Legion Bar for some refreshments
as soon as the shift ended. She did not want to ruin anyone’s plans, so she kept quiet.

On Monday morning when the operator started up the pressing machine, one of
the dies broke. The cost of the die was over a thousand dollars. But this was not the
biggest cost. When a customer was called and told there would be a delay in deliv-
ering the ceramic parts, he canceled the order. Certainly the loss of a customer is an
expensive item. Deming refers to this type of cost as the unknown and unknowable,
but at the same time it is probably the most important cost of poor quality.

On Friday the chart had predicted a problem. Afterward it was determined that
the most likely difculty was that the clay had dried and stuck to the die, leading to
the break. The chart indicated the problem, but someone had to act. For a statistical
charting procedure to be truly efective, action must be taken.

1.6 Two Basic Concepts—Population and Sample
The preceding senarios which illustrate how the evaluation of actual information is
essential for acquiring new knowledge, motivate the development of statistical rea-
soning and tools taught in this text. Most experiments and investigations conducted
by engineers in the course of investigating, be it a physical phenomenon, production
process, or manufactured unit, share some common characteristics.
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A first step in any study is to develop a clear, well-defined statement of pur-
pose. For example, a mechanical engineer wants to determine whether a new ad-
ditive will increase the tensile strength of plastic parts produced on an injection
molding machine. Not only must the additive increase the tensile strength, it needs
to increase it by enough to be of engineering importance. He therefore created the
following statement.
Purpose: Determine whether a particular amount of an additive can be found that
will increase the tensile strength of the plastic parts by at least 10 pounds per square
inch.

In any statement of purpose, try to avoid words such as soft, hard, large enough,
and so on, which are difcult to quantify. The statement of purpose can help us to
decide on what data to collect. For example, the mechanical engineer takes two
diferent amounts of additive and produces 25 specimens of the plastic part with
each mixture. The tensile strength is obtained for each of 50 specimens.

Relevant data must be collected. But it is often physically impossible or infea-
sible from a practical standpoint to obtain a complete set of data. When data are
obtained from laboratory experiments, no matter how much experimentation is per-
formed, more could always be done. To collect an exhaustive set of data related to
the damage sustained by all cars of a particular model under collision at a specified
speed, every car of that model coming of the production lines would have to be
subjected to a collision!

In most situations, we must work with only partial information. The distinction
between the data actually acquired and the vast collection of all potential observa-
tions is a key to understanding statistics.

The source of each measurement is called a unit. It is usually an object or a
person. To emphasize the term population for the entire collection of units, we call
the entire collection the population of units.

unit: A single entity, usually an object or person, whose characteristics are of
interest.
population of units: The complete collection of units about which information
is sought.

Units and population
of units

Guided by the statement of purpose, we have a characteristic of interest for
each unit in the population. The characteristic, which could be a qualitative trait, is
called a variable if it can be expressed as a number.

There can be several characteristics of interest for a given population of units.
Some examples are given in Table 1.2.

For any population there is the value, for each unit, of a characteristic or variable
of interest. For a given variable or characteristic of interest, we call the collection
of values, evaluated for every unit in the population, the statistical population or
just the population. This collection of values is the population we will address in
all later chapters. Here we refer to the collection of units as the population of units
when there is a need to diferentiate it from the collection of values.

A statistical population is the set of all measurements (or record of some quality
trait) corresponding to each unit in the entire population of units about which
information is sought.

Statistical population

Generally, any statistical approach to learning about the population begins by
taking a sample.
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Table 1.2 Examples of populations, units, and variables

Population Unit Variables/Characteristics

All students currently enrolled student GPA
in school number of credits

hours of work per week
major
right/left-handed

All printed circuit boards board type of defects
manufactured during a month number of defects

location of defects

All campus fast food restaurants restaurant number of employees
seating capacity
hiring/not hiring

All books in library book replacement cost
frequency of checkout
repairs needed

Samples from a population A sample from a statistical population is the subset of measurements that are
actually collected in the course of an investigation.

EXAMPLE 1 Variable of interest, statistical population, and sample
Transceivers provide wireless communication between electronic components of
consumer products, especially transceivers of Bluetooth standards. Addressing a
need for a fast, low-cost test of transceivers, engineers2 developed a test at the wafer
level. In one set of trials with 60 devices selected from diferent wafer lots, 49 de-
vices passed.

Identify the population unit, variable of interest, statistical population, and
sample.

Solution The population unit is an individual wafer, and the population is all the wafers in
lots currently on hand. There is some arbitrariness because we could use a larger
population of all wafers that would arrive within some fixed period of time.

The variable of interest is pass or fail for each wafer.
The statistical population is the collection of pass/fail conditions, one for each

population unit.
The sample is the collection of 60 pass/fail records, one for each unit in the

sample. These can be summarized by their totals, 49 pass and 11 fail. j

The sample needs both to be representative of the population and to be large
enough to contain sufcient information to answer the questions about the popula-
tion that are crucial to the investigation.

2G. Srinivasan, F. Taenzler, and A. Chatterjee, Loopback DFT for low-cost test of single-VCO-based
wireless transceivers, IEEE Design & Test of Computers 25 (2008), 150–159.
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EXAMPLE 2 Self-selected samples—a bad practice
A magazine which features the latest computer hardware and software for home-
ofce use asks readers to go to their website and indicate whether or not they owned
specific new software packages or hardware products. In past issues, this maga-
zine used similar information to make such statements as “40% of readers have
purchased software package P.” Is this sample representative of the population of
magazine readers?

Solution It is clearly impossible to contact all magazine readers since not all are subscribers.
One must necessarily settle for taking a sample. Unfortunately, the method used by
this magazine’s editors is not representative and is badly biased. Readers who reg-
ularly upgrade their systems and try most of the new software will be more likely
to respond positively indicating their purchases. In contrast, those who did not pur-
chase any of the software or hardware mentioned in the survey will very likely not
bother to report their status. That is, the proportion of purchasers of software pack-
age P in the sample will likely be much higher than it is for the whole population
consisting of the purchase/not purchase record for each reader. j

To avoid bias due to self-selected samples, we must take an active role in the
selection process.

Using a random number table to select samples
The selection of a sample from a finite population must be done impartially and
objectively. But writing the unit names on slips of paper, putting the slips in a box,
and drawing them out may not only be cumbersome, but proper mixing may not
be possible. However, the selection is easy to carry out using a chance mechanism
called a random number table.

Random number table

Suppose ten balls numbered 0, 1, . . . , 9 are placed in an urn and shufed. One is
drawn and the digit recorded. It is then replaced, the balls shufed, another one
drawn, and the digit recorded. The digits in Table 7W3 were actually generated
by a computer that closely simulates this procedure. A portion of this table is
shown as Table 1.3.
The chancemechanism that generated the random number table ensures that each
of the single digits has the same chance of occurrence, that all pairs 00, 01, . . . , 99
have the same chance of occurrence, and so on. Further, any collection of digits
is unrelated to any other digit in the table. Because of these properties, the digits
are called random.

EXAMPLE 3 Using the table of random digits
Eighty specialty pumps were manufactured last week. Use Table 1.3 to select a sam-
ple of size n = 5 to carefully test and recheck for possible defects before they are
sent to the purchaser. Select the sample without replacement so that the same pump
does not appear twice in the sample.

Solution The first step is to number the pumps from 1 to 80, or to arrange them in some
order so they can be identified. The digits must be selected two at a time because
the population size N = 80 is a two-digit number. We begin by arbitrarily selecting

3The W indicates that the table is on the website for this book. See Appendix B for details.
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Table 1.3 Random digits (portion of Table 7W)

1306 1189 5731 3968 5606 5084 8947 3897 1636 7810
0422 2431 0649 8085 5053 4722 6598 5044 9040 5121
6597 2022 6168 5060 8656 6733 6364 7649 1871 4328
7965 6541 5645 6243 7658 6903 9911 5740 7824 8520
7695 6937 0406 8894 0441 8135 9797 7285 5905 9539

5160 7851 8464 6789 3938 4197 6511 0407 9239 2232
2961 0551 0539 8288 7478 7565 5581 5771 5442 8761
1428 4183 4312 5445 4854 9157 9158 5218 1464 3634
3666 5642 4539 1561 7849 7520 2547 0756 1206 2033
6543 6799 7454 9052 6689 1946 2574 9386 0304 7945

9975 6080 7423 3175 9377 6951 6519 8287 8994 5532
4866 0956 7545 7723 8085 4948 2228 9583 4415 7065
8239 7068 6694 5168 3117 1568 0237 6160 9585 1133
8722 9191 3386 3443 0434 4586 4150 1224 6204 0937
1330 9120 8785 8382 2929 7089 3109 6742 2468 7025

a row and column. We select row 6 and column 21. Reading the digits in columns
21 and 22, and proceeding downward, we obtain

41 75 91 75 19 69 49

We ignore the number 91 because it is greater than the population size 80. We also
ignore any number when it appears a second time, as 75 does here. That is, we
continue reading until five diferent numbers in the appropriate range are selected.
Here the five pumps numbered

41 75 19 69 49

will be carefully tested and rechecked for defects.
For situations involving large samples or frequent applications, it is more con-

venient to use computer software to choose the random numbers. j

EXAMPLE 4 Selecting a sample by random digit dialing
Suppose there is a single three-digit exchange for the area in which you wish to con-
duct a phone survey. Use the random digit Table 7W to select five phone numbers.

Solution We arbitrarily decide to start on the second page of Table 7W at row 53 and col-
umn 13. Reading the digits in columns 13 through 16, and proceeding downward,
we obtain

5619 0812 9167 3802 4449

These five numbers, together with the designated exchange, become the phone num-
bers to be called in the survey. Every phone number, listed or unlisted, has the same
chance of being selected. The same holds for every pair, every triplet, and so on.
Commercial phones may have to be discarded and another number drawn from the
table. If there are two exchanges in the area, separate selections could be done for
each exchange. j
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Do’s and Don’ts

Do’s
1. Create a clear statement of purpose before deciding upon which variables

to observe.

2. Carefully define the population of interest.

3. Whenever possible, select samples using a random device or random num-
ber table.

Don’ts
1. Don’t unquestioningly accept conclusions based on self-selected samples.

Review Exercises
1.1 An article in a civil engineering magazine asks “How

Strong Are the Pillars of Our Overhead Bridges?” and
goes on to say that samples were collected of materials
being used in the construction of 294 overhead bridges
across the country. Let the variable of interest be a nu-
merical measure of quality. Identify the population and
the sample.

1.2 A television channel announced a vote for their view-
ers’ favorite television show. Viewers were asked to
visit the channel’s website and vote online for their fa-
vorite show. Identify the population in terms of prefer-
ences, and the sample. Is the sample likely to be rep-
resentative? Comment. Also describe how to obtain a
sample that is likely to be more representative.

1.3 Consider the population of all cars owned by women
in your neighborhood. You want to know the model of
the car.

(a) Specify the population unit.

(b) Specify the variable of interest.

(c) Specify the statistical population.

1.4 Identify the statistical population, sample, and variable
of interest in each of the following situations:

(a) Tensile strength is measured on 20 specimens of
super strength thread made of the same nano-
fibers. The intent is to learn about the strengths
for all specimens that could conceivably be made
by the same method.

(b) Fifteen calls to the computer help desk are se-
lected from the hundreds received one day. Only
4 of these calls ended without a satisfactory reso-
lution of the problem.

(c) Thirty flash memory cards are selected from the
thousands manufactured one day. Tests reveal that
6 cards do not meet manufacturing specifications.

1.5 For ceiling fans to rotate efectively, the bending an-
gle of the individual paddles of the fan must remain
between tight limits. From each hour’s production,
25 fans are selected and the angle is measured.

Identify the population unit, variable of interest,
statistical population, and sample.

1.6 Ten seniors have applied to be on the team that will
build a high-mileage car to compete against teams
from other universities. Use Table 7 of random digits
to select 5 of the 10 seniors to form the team.

1.7 Refer to the slot depth data in Table 1.1. After the
machine was repaired, a sample of three new ceramic
parts had slot depths 215, 216, and 213 (thousandths
of an inch).

(a) Redraw the X-bar chart and include the additional
mean x.

(b) Does the new x fall within the control limits?

1.8 ACanadian manufacturer identified a critical diameter
on a crank bore that needed to be maintained within a
close tolerance for the product to be successful. Sam-
ples of size 4 were taken every hour. The values of
the diferences (measurement − specification), in ten-
thousandths of an inch, are given in Table 1.4.

(a) Calculate the central line for an X-bar chart for
the 24 hourly sample means. The centerline is
x = (4.25 − 3.00 − · · · − 1.50 + 3.25)/24.

(b) Is the average of all the numbers in the table, 4 for
each hour, the same as the average of the 24 hourly
averages? Should it be?

(c) A computer calculation gives the control limits

LCL = −4.48
UCL = 7.88

Construct the X-bar chart. Identify hours where
the process was out of control.



Key Terms 21

Table 1.4 The diferences (measurement – specification), in ten-
thousandths of an inch

Hour 1 2 3 4 5 6 7 8 9 10 11 12

10 −6 −1 −8 −14 −6 −1 8 −1 5 2 5
3 1 −3 −3 −5 −2 −6 −3 7 6 1 3
6 −4 0 −7 −6 −1 −1 9 1 3 1 10

−2 −3 −7 −2 2 −6 7 11 7 2 4 4

x 4.25 −3.00 −2.75 −5.00 −5.75 −3.75 −0.25 6.25 3.50 4.00 2.00 5.50

Hour 13 14 15 16 17 18 19 20 21 22 23 24

5 6 −5 −8 2 7 8 5 8 −5 −2 −1
9 6 4 −5 8 7 13 4 1 7 −4 5
9 8 −5 1 −4 5 6 7 0 1 −7 9
7 10 −2 0 1 3 6 10 −6 2 7 0

x 7.50 7.50 −2.00 −3.00 1.75 5.50 8.25 6.50 0.75 1.25 −1.50 3.25

Key Terms
Characteristic of interest 16
Classical approach to statistics 12
Descriptive statistics 12
Population 16
Population of units 16

Quality improvement 13
Random number table 18
Reliability 13
Sample 17
Statement of purpose 16

Statistical inference 12
Statistical population 16
X-bar chart 14
Unit 16
Variable 16
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S
tatistical data, obtained from surveys, experiments, or any series of measurements,
are often so numerous that they are virtually useless unless they are condensed, or
reduced into a more suitable form. We begin with the use of simple graphics in

Section 2.1. Sections 2.2 and 2.3 deal with problems relating to the grouping of data and
the presentation of such groupings in graphical form. In Section 2.4 we discuss a relatively
new way of presenting data.

Sometimes it may be satisfactory to present data just as they are and let them speak
for themselves; on other occasions it may be necessary only to group the data and present
the result in tabular or graphical form. However, most of the time data have to be sum-
marized further, and in Sections 2.5 through 2.7 we introduce some of the most widely
used kinds of statistical descriptions.

2.1 Pareto Diagrams and Dot Diagrams
Data need to be collected to provide the vital information necessary to solve en-
gineering problems. Once gathered, these data must be described and analyzed to
produce summary information. Graphical presentations can often be the most ef-
fective way to communicate this information. To illustrate the power of graphical
techniques, we first describe aPareto diagram. This display, which orders each type
of failure or defect according to its frequency, can help engineers identify important
defects and their causes.

When a company identifies a process as a candidate for improvement, the first
step is to collect data on the frequency of each type of failure. For example, the
performance of a computer-controlled lathe is below par so workers record the fol-
lowing causes of malfunctions and their frequencies:

power fluctuations 6
controller not stable 22
operator error 13
worn tool not replaced 2
other 5

These data are presented as a special case of a bar chart called a Pareto diagram
in Figure 2.1. This diagram graphically depicts Pareto’s empirical law that any as-
sortment of events consists of a few major and many minor elements. Typically, two
or three elements will account for more than half of the total frequency.

Concerning the lathe, 22 or 100(22/48) = 46% of the cases are due to an un-
stable controller and 22+ 13 = 35 or 100(35/48) = 73% are due to either unstable
controller or operator error. These cumulative percentages are shown in Figure 2.1 as
a line graph whose scale is on the right-hand side of the Pareto diagram, as appears
again in Figure 15.2.

22
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Figure 2.1
A Pareto diagram of failures
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In the context of quality improvement, to make the most impact we want to
select the few vital major opportunities for improvement. This graph visually em-
phasizes the importance of reducing the frequency of controller misbehavior. An
initial goal may be to cut it in half.

As a second step toward improvement of the process, data were collected on
the deviations of cutting speed from the target value set by the controller. The seven
observed values of (cutting speed) − (target),

3 6 −2 4 7 4 3

are plotted as a dot diagram in Figure 2.2. The dot diagram visually summarizes the
information that the lathe is, generally, running fast. In Chapters 13 and 15 we will
develop efcient experimental designs and methods for identifying primary causal
factors that contribute to the variability in a response such as cutting speed.

Figure 2.2
Dot diagram of cutting speed
deviations 22 0 2 4 6 8

When the number of observations is small, it is often difcult to identify any
pattern of variation. Still, it is a good idea to plot the data and look for unusual
features.

EXAMPLE 1 Dot diagrams expose outliers
A major food processor regularly monitors bacteria along production lines that in-
clude a stufng process for meat products. An industrial engineer records the maxi-
mum amount of bacteria present along the production line, in the units Aerobic Plate
Count per square inch (APC/in2), for n = 7 days. (Courtesy of David Brauch)

96.3 155.6 3408.0 333.3 122.2 38.9 58.0

Create a dot diagram and comment.

Solution The ordered data

38.9 58.0 96.3 122.2 155.6 333.3 3408.0

are shown as the dot diagram in Figure 2.3. By using open circles, we help diferen-
tiate the crowded smaller values. The one very large bacteria count is the prominent
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Figure 2.3
Maximum bacteria counts on
seven days.

0 500 1000 1500 2000 2500 3000 3500
Bacteria Count (APC/sq.in)

feature. It indicates a possible health concern. Statisticians call such an unusual ob-
servation an outlier. Usually, outliers merit further attention. j

EXAMPLE 2 A dot diagram for multiple samples reveals diferences
The vessels that contain the reactions at some nuclear power plants consist of two
hemispherical components welded together. Copper in the welds could cause them
to become brittle after years of service. Samples of welding material from one pro-
duction run or “heat” used in one plant had the copper contents 0.27, 0.35, 0.37.
Samples from the next heat had values 0.23, 0.15, 0.25, 0.24, 0.30, 0.33, 0.26. Draw
a dot diagram that highlights possible diferences in the two production runs (heats)
of welding material. If the copper contents for the two runs are diferent, they should
not be combined to form a single estimate.

Solution We plot the first group as solid circles and the second as open circles (see Figure 2.4).
It seems unlikely that the two production runs are alike because the top two values
are from the first run. (In Exercise 14.23, you are asked to confirm this fact.) The
two runs should be treated separately.

The copper content of the welding material used at the power plant is directly
related to the determination of safe operating life. Combining the sample would
lead to an unrealistically low estimate of copper content and too long an estimate of
safe life. j

Figure 2.4
Dot diagram of copper content

0.15 0.20 0.25 0.30 0.35 0.40
copper content

When a set of data consists of a large number of observations, we take the ap-
proach described in the next section. The observations are first summarized in the
form of a table.

2.2 Frequency Distributions
A frequency distribution is a table that divides a set of data into a suitable number
of classes (categories), showing also the number of items belonging to each class.
The table sacrifices some of the information contained in the data. Instead of know-
ing the exact value of each item, we only know that it belongs to a certain class. On
the other hand, grouping often brings out important features of the data, and the gain
in “legibility” usually more than compensates for the loss of information.

We shall consider mainly numerical distributions; that is, frequency distribu-
tions where the data are grouped according to size. If the data are grouped accord-
ing to some quality, or attribute, we refer to such a distribution as a categorical
distribution.

The first step in constructing a frequency distribution consists of deciding how
many classes to use and choosing the class limits for each class. That is, deciding
from where to where each class is to go. Generally speaking, the number of classes
we use depends on the number of observations, but it is seldom profitable to use
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fewer than 5 or more than 15. The exception to the upper limit is when the size of
the data set is several hundred or even a few thousand. It also depends on the range
of the data, namely, the diference between the largest observation and the smallest.

Once the classes are set, we count the number of observations in each class,
called the class frequencies. This task is simplified if the data are first sorted from
smallest to largest.

Figure 2.5
Nanopillars

To illustrate the construction of a frequency distribution, we consider data
collected in a nanotechnology setting. Engineers fabricating a new transmission-
type electron multiplier created an array of silicon nanopillars on a flat silicon
membrane. The precise structure can influence the electrical properties, so the
heights of 50 nanopillars were measured in nanometers (nm), or 10−9× meters.
(See Figure 2.5.)1

245 333 296 304 276 336 289 234 253 292
366 323 309 284 310 338 297 314 305 330
266 391 315 305 290 300 292 311 272 312
315 355 346 337 303 265 278 276 373 271
308 276 364 390 298 290 308 221 274 343

Since the largest observation is 391 and the smallest is 221 and the range is
391−221 = 170, we might choose five classes having the limits 206–245, 246–285,
286–325, 326–365, 366–405, or the six classes 216–245, 246–275, …, 366–395.
Note that, in either case, the classes do not overlap, they accommodate all the
data, and they are all of the same width.

Initially, deciding on the first of these classifications, we count the number of
observations in each class to obtain the frequency distribution:

Limits of Classes Frequency

206–245 3
246–285 11
286–325 23
326–365 9
366–405 4

Total 50

Note that the class limits are given to as many decimal places as the original
data. Had the original data been given to one decimal place, we would have used the
class limits 205.9–245.0, 245.1–285.0,…, 365.1–405.0. If they had been rounded to
the nearest 10 nanometers, we would have used the class limits 210–240, 250–280,
290–320, 330–360, 370–400.

In the preceding example, the data on heights of nanopillars may be thought of
as values of a continuous variable which, conceivably, can be any value in an interval.
But if we use classes such as 205–245, 245–285, 285–325, 325–365,
365–405, there exists the possibility of ambiguities; 245 could go into the first class
or the second, 285 could go into the second class or the third, and so on. To avoid
this difculty, we take an alternative approach.

We make an endpoint convention. For the pillar height data, we can take (205,
245] as the first class, (245, 285] as the second, and so on through (365, 405]. That
is, for this data set, we adopt the convention that the right-hand endpoint is included

1Data and photo from H. Qin, H. Kim, and R. Blick, Nanopillar arrays on semiconductor membranes as
electron emission amplifiers, Nanotechnology 19 (2008), used with permission from IOP Publishing Ltd.
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but the left-hand endpoint is not. For other data sets wemay prefer to reverse the end-
point convention so the left-hand endpoint is included but the right-hand endpoint is
not. Whichever endpoint convention is adopted, it should appear in the description
of the frequency distribution.

Under the convention that the right-hand endpoint is included, the frequency
distribution of the nanopillar data is

Height (nm) Frequency

(205, 245] 3
(245, 285] 11
(285, 325] 23
(325, 365] 9
(365, 405] 4

Total 50

The class boundaries are the endpoints of the intervals that specify each class.
As we pointed out earlier, once data have been grouped, each observation has lost
its identity in the sense that its exact value is no longer known. This may lead
to difculties when we want to give further descriptions of the data, but we can
avoid them by representing each observation in a class by its midpoint, called the
class mark. In general, the class marks of a frequency distribution are obtained
by averaging successive class boundaries. If the classes of a distribution are all of
equal length, as in our example, we refer to the common interval between any suc-
cessive class marks as the class interval of the distribution. Note that the class
interval may also be obtained from the diference between any successive class
boundaries.

EXAMPLE 3 Class marks and class interval for grouped data
With reference to the distribution of the heights of nanopillars, find (a) the class
marks and (b) the class interval.

Solution (a) The class marks are

205 + 245
2

= 225
245 + 285

2
= 265, 305, 345, 385

(b) The class interval is 245 − 205 = 40. j

There are several alternative forms of distributions into which data are some-
times grouped. Foremost among these are the “less than or equal to,” “less than,”
“or more,” and “equal or more” cumulative distributions. A cumulative “less than
or equal to” distribution shows the total number of observations that are less than
or equal to the given values. These values must be class boundaries, with an appro-
priate endpoint convention, when the data are grouped into a frequency distribution.

EXAMPLE 4 Cumulative distribution of the nanopillar heights
Convert the distribution of the heights of nanopillars into a distribution according to
how many observations are less than or equal to 205, less than or equal to 245, …,
less than or equal to 405.
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Solution Since none of the values is less than 205, 3 are less than or equal to 245, 3+ 11 = 14
are less than or equal to 285, 14+ 23 = 37 are less than or equal to 325, 37+9 = 46
are less than or equal to 365, and all 50 are less than or equal to 405, we have

Heights (mM) Cumulative Frequency

(205, 245] 3
(245, 285] 14
(285, 325] 37
(325, 365] 46
(365, 405] 50

j

When the endpoint convention for a class includes the left-hand endpoint but not the
right-hand endpoint, the cumulative distribution becomes a “less than” cumulative
distribution.

Cumulative “more than” and “or more” distributions are constructed similarly
by adding the frequencies, one by one, starting at the other end of the frequency
distribution. In practice, “less than or equal to” cumulative distributions are used
most widely, and it is not uncommon to refer to “less than or equal to” cumulative
distributions simply as cumulative distributions.

2.3 Graphs of Frequency Distributions
Properties of frequency distributions relating to their shape are best exhibited through
the use of graphs, and in this section we shall introduce some of the most widely
used forms of graphical presentations of frequency distributions and cumulative
distributions.

The most common form of graphical presentation of a frequency distribution is
the histogram. The histogram of a frequency distribution is constructed of adjacent
rectangles. Provided that the class intervals are equal, the heights of the rectangles
represent the class frequencies and the bases of the rectangles extend between suc-
cessive class boundaries. A histogram of the heights of nanopillars data is shown in
Figure 2.6.

Using our endpoint convention, the interval (205, 245] that defines the first class
has frequency 3, so the rectangle has height 3, the second rectangle, over the interval

Figure 2.6
Histogram of pillar height Height (nm)
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(245, 285], has height 9, and so on. The tallest rectangle is over the interval (285,
325] and has height 23. The histogram has a single peak and is reasonably symmet-
ric. Almost half of the area, representing half of the observations, is over the interval
285 to 325 nanometers.

The choice of frequency, or relative frequency, for the vertical scale is only valid
when all of the classes have the same width.

Inspection of the graph of a frequency distribution as a histogram often brings
out features that are not immediately apparent from the data themselves. Aside from
the fact that such a graph presents a good overall picture of the data, it can also em-
phasize irregularities and unusual features. It can reveal outlying observations which
somehow do not fit the overall picture. Their distruption of the overall pattern of
variation in the data may be due to errors of measurement, equipment failure, and
similar causes. Also, the fact that a histogram exhibits two or more peaks (maxima)
can provide pertinent information. The appearance of two peaks may imply, for ex-
ample, a shift in the process that is being measured, or it may imply that the data
come from two or more sources. With some experience one learns to spot such irreg-
ularities or anomalies, and an experienced engineer would find it just as surprising if
the histogram of a distribution of integrated-circuit failure times were symmetrical
as if a distribution of American men’s hat sizes were bimodal.

Sometimes it can be enough to draw a histogram in order to solve an engineering
problem.

EXAMPLE 5 A histogram reveals the solution to a grinding operation problem
A metallurgical engineer was experiencing trouble with a grinding operation. The
grinding action was produced by pellets. After some thought he collected a sample
of pellets used for grinding, took them home, spread them out on his kitchen table,
and measured their diameters with a ruler. His histogram is displayed in Figure 2.7.
What does the histogram reveal?

Solution The histogram exhibits two distinct peaks, one for a group of pellets whose diameters
are centered near 25 and the other centered near 40.

By getting his supplier to do a better sort, so all the pellets would be essentially
from the first group, the engineer completely solved his problem. Taking the action
to obtain the data was the big step. The analysis was simple. j

Figure 2.7
Histogram of pellet diameter
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As illustrated by the next example concerning a system of supercomputers, not
all histograms are symmetric.
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EXAMPLE 6 A histogram reveals the pattern of a supercomputer systems data
A computer scientist, trying to optimize system performance, collected data on the
time, in microseconds, between requests for a particular process service.

2,808 4,201 3,848 9,112 2,082 5,913 1,620 6,719 21,657
3,072 2,949 11,768 4,731 14,211 1,583 9,853 78,811 6,655
1,803 7,012 1,892 4,227 6,583 15,147 4,740 8,528 10,563

43,003 16,723 2,613 26,463 34,867 4,191 4,030 2,472 28,840
24,487 14,001 15,241 1,643 5,732 5,419 28,608 2,487 995
3,116 29,508 11,440 28,336 3,440

Draw a histogram using the equal length classes [0, 10,000), [10,000, 20,000),
. . . , [70,000, 80,000) where the left-hand endpoint is included but the right-hand
endpoint is not.

Solution The histogram of this interrequest time data, shown in Figure 2.8, has a long right-
hand tail. Notice that, with this choice of equal length intervals, two classes are
empty. To emphasize that it is still possible to observe interrequest times in these
intervals, it is preferable to regroup the data in the right-hand tail into classes of
unequal lengths (see Exercise 2.62). j

Figure 2.8
Histogram of interrequest time
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When a histogram is constructed from a frequency table having classes of
unequal lengths, the height of each rectangle must be changed to

height = relative frequency
width

The area of the rectangle then represents the relative frequency for the class and the
total area of the histogram is 1. We call this a density histogram.

EXAMPLE 7 A density histogram has total area 1
Compressive strength was measured on 58 specimens of a new aluminum alloy un-
dergoing development as a material for the next generation of aircraft.

66.4 67.7 68.0 68.0 68.3 68.4 68.6 68.8 68.9 69.0 69.1
69.2 69.3 69.3 69.5 69.5 69.6 69.7 69.8 69.8 69.9 70.0
70.0 70.1 70.2 70.3 70.3 70.4 70.5 70.6 70.6 70.8 70.9
71.0 71.1 71.2 71.3 71.3 71.5 71.6 71.6 71.7 71.8 71.8
71.9 72.1 72.2 72.3 72.4 72.6 72.7 72.9 73.1 73.3 73.5
74.2 74.5 75.3




